SOA - S90.08B - Latest SOA Design & Architecture Lab with Services & Microservices Learning Engine

S90.08B Learning Engine, S90.08B Latest Study Questions, S90.08B Valid Exam Bootcamp, Valid Braindumps S90.08B Free, Updated S90.08B Testkings

If the user fails in the S90.08B exam questions for any reason, we will refund the money after this process. In addition, we provide free updates to users for one year long. If the user finds anything unclear in the S90.08B practice materials exam, we will send email to fix it, and our team will answer all of your questions related to the S90.08B Guide prep. What is more, we provide the free demows of our S90.08B study prep for our customers to download before purchase.

The SOA S90.08B certification exam covers a wide range of topics related to SOA design and architecture, including service-oriented design principles, service inventory modeling, service-oriented analysis and design (SOAD), service-oriented integration, service-oriented security, and service-oriented governance. The exam also covers microservices architecture, including the principles, benefits, and challenges of microservices, as well as the design and implementation of microservices-based solutions.

The SOA S90.08B exam covers a range of topics related to SOA design and architecture, including service modeling, service composition, service-oriented analysis, service-oriented design, and microservices architecture. The exam is designed to test the candidate's knowledge and skills in these areas, as well as their ability to apply these concepts in practical scenarios.

>> S90.08B Learning Engine <<

SOA S90.08B Latest Study Questions - S90.08B Valid Exam Bootcamp

Knowledge makes prominent contributions to human civilization and progress. In the 21st century, the rate of unemployment is increasing greatly. Many jobs are replaced by intelligent machines. You must learn practical knowledge such as our S90.08B actual test guide, which cannot be substituted by artificial intelligence. Now, our S90.08B learning prep can meet your demands. You will absorb the most useful knowledge with the assistance of our study materials. The S90.08B certificate is valuable in the job market. But you need professional guidance to pass the exam. For instance, our S90.08B exam questions fully accords with your requirements.

SOA Design & Architecture Lab with Services & Microservices Sample Questions (Q10-Q15):

NEW QUESTION # 10

When Service A receives a message from Service Consumer A (1), the message is processed by Component A. This component first invokes Component B (2), which uses values from the message to query Database A in order to retrieve additional data. Component B then returns the additional data to Component A. Component A then invokes Component C (3), which interacts with the API of a legacy system to retrieve a new data value.
Component C then returns the data value back to Component A.
Next, Component A sends some of the data It has accumulated to Component D (4), which writes the data to a text file that is placed in a specific folder. Component D then waits until this file is imported into a different system via a regularly scheduled batch import. Upon completion of the import, Component D returns a success or failure code back to Component A. Component A finally sends a response to Service Consumer A (5) containing all of the data collected so far and Service Consumer A writes all of the data to Database B (6).
Components A, B, C, and D belong to the Service A service architecture. Database A, the legacy system and the file folders are shared resources within the IT enterprise.
Service A is an entity service with a service architecture that has grown over the past few years. As a result of a service inventory-wide redesign project, you are asked to revisit the Service A service architecture in order to separate the logic provided by Components B, C, and D into three different utility services without disrupting the behavior of Service A as it relates to Service Consumer A.
What steps can be taken to fulfill these requirements?

  • A. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate wrapper utility service that wraps the shared database. The Asynchronous Queuing pattern can be applied so that a messaging queue is positioned between Component A and Component C, thereby enabling communication during the times when the legacy system may be unavailable or heavily accessed by other parts of the IT enterprise. The Service Fagade pattern can be applied so that a fagade component is added between Component A and Component D so that any change In behavior can be compensated.
    The Service Autonomy principle can be further applied to Service A to help make up for any performance loss that may result from splitting the component into a separate wrapper utility service.
  • B. The Legacy Wrapper pattern can be applied so that Component B Is separated into a separate utility service that wraps the shared database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate utility service that acts as a wrapper for the legacy system API. The Legacy Wrapper pattern can be applied once more to Component D so that it is separated into another utility service that provides standardized access to the file folder. The Service Fagade pattern can be applied so that three fagade components are added: one between Component A and each of the new wrapper utility services. This way, the fagade components can compensate for any change in behavior that may occur as a result of the separation. The Service Composability principle can be further applied to Service A and the three new wrapper utility services so that all four services are optimized for participation in the new service composition. This will help make up for any performance loss that may result from splitting the three components into separate services.
  • C. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate utility service that wraps the shared database. The Legacy Wrapper pattern can be applied again so that Component C is separated into a separate utility service that acts as a wrapper for the legacy system API. Component D can also be separated into a separate service and the Event-Driven Messaging pattern can be applied to establish a publisher-subscriber relationship between this new service and Component A. The interaction between Service Consumer A and Component A can then be redesigned so that Component A first interacts with Component B and the new wrapper service. Service A then issues a final message back to Service Consumer A. The Service Composability principle can be further applied to Service A and the three new wrapper utility services so that all four services are optimized for participation in the new service composition. This will help make up for any performance loss that may result from splitting the three components into separate services.
  • D. The Legacy Wrapper pattern can be applied so that Component B is separated into a separate wrapper utility service that wraps the shared database. The State Repository and State Messagingpatterns can be applied so that a messaging repository is positioned between Component A and Component C, thereby enabling meta data-driven communication during the times when the legacy system may be unavailable or heavily accessed by other parts of the IT enterprise. The Service Fagade pattern can be applied so that a fagade component is added between Component A and Component D so that any change in behavior can be compensated. The Service Statelessness principle can be further applied to Service A to help make up for any performance loss that may result from splitting the component into a separate wrapper utility service.

Answer: B


NEW QUESTION # 11

Service Consumer A sends Service A a message containing a business document (1). The business document is received by Component A, which keeps the business document in memory and forwards a copy to Component B (3). Component B first writes portions of the business document to Database A (4). Component B then writes the entire business document to Database B and uses some of the data values from the business document as query parameters to retrieve new data from Database B (5).
Next, Component B returns the new date* back to Component A (6), which merges it together with the original business document it has been keeping in memory and then writes the combined data to Database C (7). The Service A service capability invoked by Service Consumer A requires a synchronousrequest-response data exchange. Therefore, based on the outcome of the last database update, Service A returns a message with a success or failure code back to Service Consumer A (8).
Databases A and B are shared, and Database C is dedicated to the Service A service architecture.
There are several problems with this architecture. The business document that Component A is required to keep in memory (while it waits for Component B to complete its processing) can be very large. The amount of runtime resources Service A uses to keep this data in memory can decrease the overall performance of all service instances, especially when it is concurrently invoked by multiple service consumers. Additionally, Service A can take a long time to respond back to Service Consumer A because Database A is a shared database that sometimes takes a long time to respond to Component B. Currently, Service Consumer A will wait for up to 30 seconds for a response, after which it will assume the request to Service A has failed and any subsequent response messages from Service A will be rejected.
What steps can be taken to solve these problems?

  • A. The Service Statelessness principle can be applied together with the State Repository pattern to establish a state database to which Component A can defer the business document data while it waits for a response from Component B. The Service Autonomy principle can be applied together with the Service Abstraction principle, the Legacy Wrapper pattern, and the Service Fagade pattern in order to isolate Database A so that it is encapsulated by a separate wrapper utility service and to hide the Database A implementation from Service A and to position a fagade component between Component B and the new wrapper service. This fagade component will be responsible for compensating the unpredictable behavior of Database A.
  • B. None of the above.
  • C. The Service Statelessness principle can be applied together with the State Repository pattern to establish a state database to which Component A can defer the business document data to while it waits for a response from Component B. The Service Autonomy principle can be applied together with the Service Data Replication pattern to establish a dedicated replicated database for Component B to access instead of shared Database A. The Asynchronous Queuing pattern can be applied to establish a message queue between Service Consumer A and Service A so that Service Consumer A does not need to remain stateful while it waits for a response from Service A.
  • D. The Service Statelessness principle can be applied together with the State Repository pattern to extend Database C so that it also becomes a state database allowing Component A to temporarily defer the business document data while it waits for a response from Component B. The Service Autonomy principle can be applied together with the Legacy Wrapper pattern to isolate Database A so that it is encapsulated by a separate wrapper utility service. The Compensating Service Transaction pattern can be applied so that whenever Service A's response time exceeds 30 seconds, a notification is sent to a human administrator to raise awareness of the fact that the eventual response of Service A will be rejected by Service Consumer A.

Answer: C

Explanation:
Explanation
The problems with the current architecture can be addressed by applying the following patterns:
* Service Statelessness principle and State Repository pattern - This pattern allows Component A to defer the business document data to a state database while it waits for a response from Component B. This helps reduce the amount of runtime resources Service A uses to keep the data in memory and improves overall performance.
* Service Autonomy principle and Service Data Replication pattern - This pattern allows Component B to
* access a dedicated replicated database instead of the shared Database A, which can improve response time.
* Asynchronous Queuing pattern - This pattern allows Service A to use a message queue to communicate with Service Consumer A asynchronously. This means that Service Consumer A does not need to remain stateful while waiting for a response from Service A, which can improve overall performance and scalability.
Therefore, option B is the correct answer. Option A is incorrect because it suggests using the Compensating Service Transaction pattern to raise awareness of the eventual response rejection, which does not actually solve the problem. Option C is also incorrect because it suggests using multiple patterns, which may not be necessary and can add unnecessary complexity to the architecture.


NEW QUESTION # 12
Refer to Exhibit.

Service A is an entity service that provides a Get capability which returns a data value that is frequently changed.
Service Consumer A invokes Service A in order to request this data value (1). For Service A to carry out this request, it must invoke Service B (2), a utility service that interacts (3, 4) with the database in which the data value is stored. Regardless of whether the data value changed, Service B returns the latest value to Service A (5), and Service A returns the latest value to Service Consumer A (6).
The data value is changed when the legacy client program updates the database (7). When this change will occur is not predictable. Note also that Service A and Service B are not always available at the same time.
Any time the data value changes, Service Consumer A needs to receive It as soon as possible. Therefore, Service Consumer A initiates the message exchange shown In the figure several times a day. When it receives the same data value as before, the response from Service A Is ignored. When Service A provides an updated data value, Service Consumer A can process it to carry out its task.
The current service composition architecture is using up too many resources due to the repeated invocation of Service A by Service Consumer A and the resulting message exchanges that occur with each invocation.
What steps can be taken to solve this problem?

  • A. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and a database monitoring agent introduced through the application of the Service Agent pattern. The database monitoring agent monitors updates made by the legacy client to the database. This way, every time the data value is updated, an event is triggered and the database monitoring agent, acting as the publisher, can notify Service Consumer A, which acts as the subscriber.
    The Asynchronous Queuing pattern can be applied between Service Consumer A and the database monitoring agent so that the event notification message sent out by the database monitoring agent will be received by Service Consumer A, even when Service Consumer A is unavailable.
  • B. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service A and Service B. This way, every time the data value is updated, an event is triggered and Service B, acting as the publisher, can notify Service A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service A and Service B so that the event notification message sent out by Service B will be received by Service A, even when Service A is unavailable.
  • C. The Asynchronous Queuing pattern can be applied so that messaging queues are established between Service A and Service B and between Service Consumer A and Service A. This way, messages are never lost due to the unavailability of Service A or Service B.
  • D. The Event-Driven Messaging pattern can be applied by establishing a subscriber-publisher relationship between Service Consumer A and Service A. This way, every time the data value is updated, an event is triggered and Service A, acting as the publisher, can notify Service Consumer A, which acts as the subscriber. The Asynchronous Queuing pattern can be applied between Service Consumer A and Service A so that the event notification message sent out by Service A will be received by Service Consumer A, even when Service Consumer A is unavailable.

Answer: B

Explanation:
This solution is the most appropriate one among the options presented. By using the Event-Driven Messaging pattern, Service A can be notified of changes to the data value without having to be invoked repeatedly by Service Consumer A, which reduces the resources required for message exchange. Asynchronous Queuing ensures that the event notification message is not lost due to the unavailability of Service A or Service B. This approach improves the efficiency of the service composition architecture.


NEW QUESTION # 13
Refer to Exhibit.

Service A is a task service that is required to carry out a series of updates to a set of databases in order to complete a task. To perform the database updates. Service A must interact with three other services that each provides standardized data access capabilities.
Service A sends its first update request message to Service B (1), which then responds with a message containing either a success or failure code (2). Service A then sends its second update request message to Service C (3), which also responds with a message containing either a success or failure code (4). Finally, Service A sends a request message to Service D (5), which responds with its own message containing either a success or failure code (6).
Services B, C and D are agnostic services that are reused and shared by multiple service consumers. This has caused unacceptable performance degradation for the service consumers of Service A as it is taking too long to complete its overall task. You've been asked to enhance the service composition architecture so that Service A provides consistent and predictable runtime performance. You are furthermore notified that a new type of data will be introduced to all three databases. It is important that this data is exchanged in a standardized manner so that the data model used for the data in inter-service messages is the same.
What steps can be taken to fulfill these requirements?

  • A. The Service Fagade pattern is applied to all services in order to create an intermediary processing layer within each service architecture. The Content Negotiation pattern is applied so that each service fagade component within each service architecture is equipped with the logic required to defer request messages to other service instances when concurrent usage of the service is high, and to further apply the conversation logic necessary to convert proprietary data from a database into the standardized XML schema format.
  • B. The Compensating Service Transaction pattern can be applied so that exception logic is executed to notify Service A whenever the data access logic executed by Service B, C, or D takes too long. If the execution time exceeds a predefined limit, then the overall service activity is cancelled and a failure code is returned to Service A. The Schema Centralization pattern is applied to ensure that all services involved in the composition use the same schemas to represented the data consistently.
  • C. The Redundant Implementation pattern is applied to Service A, along with the Service Instance Routing pattern. This allows for multiple instances of Service A to be created across multiple physical implementations, thereby increasing scalability and availability. The Dual Protocols pattern is applied to all services to support proprietary and standardized data models.
  • D. The Composition Autonomy pattern can be applied to establish an isolated environment in which redundant implementations of Services B, C and D are accessed only by Service A. The Canonical Schema pattern can be applied to ensure that the new type of data is represented by the same data model, regardless of which service sends or receives a message containing the data.

Answer: D

Explanation:
This approach isolates the services used by Service A, allowing it to avoid the performance degradation caused by multiple service consumers. By creating redundant implementations of Services B, C, and D that are accessed only by Service A, the Composition Autonomy pattern also ensures that Service A's runtime performance is consistent and predictable. Applying the Canonical Schema pattern ensures that the new type of data is exchanged in a standardized manner, ensuring consistent representation of the data model used for the data in inter-service messages.


NEW QUESTION # 14
Refer to Exhibit.

Service A is a utility service that provides generic data access logic to a database containing data that is periodically replicated from a shared database (1). Because the Standardized Service Contract principle was applied to the design of Service A, its service contract has been fully standardized.
The service architecture of Service A Is being accessed by three service consumers. Service Consumer A accesses a component that is part of the Service A Implementation by Invoking it directly (2). Service Consumer B invokes Service A by accessing Its service contract (3). Service Consumer C directly accesses the replicated database that Is part of the Service A Implementation (4).
You've been told that the reason Service Consumers A and C bypass the published Service A service contract is because, for security reasons, they are not allowed to access a subset of the capabilities in the API that comprises the Service A service contract. How can the Service A architecture be changed to enforce these security restrictions while avoiding negative forms of coupling?

  • A. The Contract Centralization pattern can be applied to force all service consumers to access the Service A architecture via its published service contract. This will prevent negative forms of coupling that could lead to problems when the database is replaced. The Service Abstraction principle can then be applied to hide underlying service architecture details so that future service consumers cannot be designed to access any part of the underlying service implementation.
  • B. The Contract Centralization pattern can be applied to force service consumers to access the Service A architecture via its published service contract only. The Service Loose Coupling principle can then be applied to ensure that the centralized service contract does not contain any content that is dependent on or derived from the underlying service implementation.
  • C. The Contract Centralization pattern can be applied to force service consumers to access the Service A architecture via its published service contract only. The Concurrent Contracts pattern can be applied to Service A in order to establish one or more alternative service contracts. This allows service consumers with different levels of authorization to access different types of service logic via Service A's published service contracts.
  • D. The Contract Centralization pattern can be applied to force service consumers to access the Service A architecture via its published service contract only. The Idempotent Capability pattern can be applied to Service A to establish alternative sets of service capabilities for service consumers with different levels of authorization.

Answer: C

Explanation:
The Contract Centralization pattern can be applied to force service consumers to access the Service A architecture via its published service contract only. The Service Loose Coupling principle can then be applied to ensure that the centralized service contract does not contain any content that is dependent on or derived from the underlying service implementation. This will enforce the security restrictions while avoiding negative forms of coupling. By ensuring loose coupling, changes to the implementation of Service A will not require changes to its published service contract, making it easier to maintain and evolve the service.


NEW QUESTION # 15
......

Constant improvements are the inner requirement for one person. As one person you can’t be satisfied with your present situation and must keep the pace of the times. You should constantly update your stocks of knowledge and practical skills. So you should attend the certificate exams such as the test SOA certification to improve yourself and buying our S90.08B Latest Exam file is your optimal choice. Our S90.08B exam questions combine the real exam’s needs and the practicability of the knowledge. The benefits after you pass the test SOA certification are enormous and you can improve your social position and increase your wage.

S90.08B Latest Study Questions: https://www.dumpcollection.com/S90.08B_braindumps.html

Vues 51
Partager
Comment
Emoji
😀 😁 😂 😄 😆 😉 😊 😋 😎 😍 😘 🙂 😐 😏 😣 😯 😪 😫 😌 😜 😒 😔 😖 😤 😭 😱 😳 😵 😠 🤔 🤐 😴 😔 🤑 🤗 👻 💩 🙈 🙉 🙊 💪 👈 👉 👆 👇 🖐 👌 👏 🙏 🤝 👂 👃 👀 👅 👄 💋 💘 💖 💗 💔 💤 💢
Vous aimerez aussi